Reactions of $\mathbf{Cp^*}_{3}\mathbf{Co}_{3}(\mu_2\text{-H})_{3}(\mu_3\text{-H})$ **with Carbon Dioxide, Carbon Disulfide, and Phenyl Isocyanate**

Charles P. Casey,* Ross A. Widenhoefer, and Randy K. Hayashi

Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706

Received *August* 29, *1994@*

The tetrahydride tricobalt cluster $\text{Cp*}_3\text{CO}_3(\mu_2-H)_{3}(\mu_3-H)$ (1) reduces CO₂ at 120 °C to form the dicobalt dicarbonyl complex $[Cp*Co(\mu-CO)]_2$ (2) in 45% yield by ¹H NMR. 1 reacted with CS₂ at room temperature to form the thiocarbonyl cluster Cp*₃Co₃(μ ₃-CS)(μ ₃-S) (3) in 19% isolated yield. **3** was characterized by X-ray crystallography and shown to consist of a triangle of cobalt atoms $[Co-Co_{(ave)} = 2.495 \text{ Å}]$ capped on one face by a μ_3 -sulfide ligand $[Co-\mu_3-S_{(ave)}]=2.129$ Å] and on the opposite face by a μ_3 -thiocarbonyl ligand $[Co-\mu_3-C_{(ave)}]=1.949$, μ_3 -C-S = 1.634(5) Å]. **1** reacted with phenyl isocyanate at 55 °C to form the N,N'-diphenylureylene complex $Cp^*_{2}Co_2(\mu_2,\mu_2-\eta^2-PhNCONPh)$ (5), the dicarbonyl tricobalt cluster $Cp^*_{3}Co_3(\mu_3-CO)_2$ (6), and the carbonyl dimer **2.** *5* was isolated in 13% yield and characterized by X-ray crystallography, which revealed that each nitrogen atom of the η^2 -N,N'-diphenylureylene ligand was symmetrically bonded to both cobalt atoms [Co–Co = 2.456-(1), $Co-\mu_2-N_{\text{(ave)}} = 1.959 \text{ Å}.$

Introduction

We have been exploring the reactions of the unusual trinuclear tetrahydride cluster $Cp*_{3}Co_{3}(\mu_{2}-H)_{3}(\mu_{3}-H)$ (1)¹ with small unsaturated molecules in an effort to form new tricobalt derivatives. For example, we have shown that **1** reacts rapidly with NO at room temperature to form the bicapped nitrosyl cluster $Cp*_{3}Co_{3}(\mu_{3}-NO)_{2}$.² 1 reacted rapidly with CO at room temperature to form the dicarbonyl dihydride cluster $Cp*_{3}Co_{3}$ - $(\mu_3\text{-CO})(\mu_2\text{-CO})(\mu\text{-H})_2$ (Scheme 1).³ Cluster 1 reacted with tertbutyl isocyanide at low temperature to form the bis(isocyanide) cluster $Cp*_{3}Co_{3}(\mu_{3}-CNCMe_{3})(\mu_{2}-CNCMe_{3})(\mu-H)_{2}$, which undergoes rapid isocyanide insertion into a Co-H bond to produce the formimidoyl cluster $Cp*_{3}Co_{3}(\mu-H)(\mu_{3}-\eta^{2}-HC=NCMe_{3})$.³

We have also shown that **1** reacts with acetylene to form the mono(ethylidyne) clusters $Cp*_{3}Co_{3}(\mu_{3}-CCH_{3})(\mu_{2}-H)_{3}$ and $Cp*_{3}$ - $Co₃(\mu_3-CCH₃)(\mu_3-H)$; these mono(ethylidyne) clusters react further with acetylene to ultimately yield the bis(ethylidyne) cluster $Cp*_{3}Co_{3}(\mu_{3}-CCH_{3})_{2}$ (Scheme 2).⁴ The mono(ethylidyne) clusters interconvert quantitatively via reversible H_2 addition.

Carbon dioxide can be reduced by H_2 over heterogeneous catalysts. Depending on reaction conditions and catalyst, methane, methanol, or CO can be obtained.⁵ In addition, homogeneous transition metal complexes and clusters have been studied as potential catalysts for the water-gas shift reaction⁶

(1) Kersten. J. L.; Rheingold, **A.** L.: Theopold, K. H.; Casey. C. P.:

and for the hydrogenation of $CO₂$ to formic acid.⁷ The stoichiometric reaction of $CO₂$ with metal hydrides to produce metal formate complexes has been reported.8 The reaction of $CO₂$ and other heterocumulenes with metal hydride clusters is therefore of interest as an analog of catalytic $CO₂$ reduction. Because tetrahydride cluster **1** displayed interesting reduction chemistry with both acetylene and tert-butyl isocyanide, we investigated the reaction of 1 with $CO₂$ and its analogs $CS₂$ and PhNCO.

Results

Reaction of 1 with CO_2 **. A black** C_6D_6 **solution of the** tetrahydride **1** was heated at 120 "C under 5 atm carbon dioxide and monitored periodically by 'H NMR spectroscopy. Cluster **1** reacted slowly $(t_{1/2} = 6.2 \text{ h})$ over 44 h to form a bright green

[@] Abstract published in *Advance* ACS *Abstracts,* February 1. 1995.

Widenhoefer. R. **A.;** Hop, C. E. C. **A.** *Angeu. Chem.* **1992.** *104.* 1364: Angebv. *Chem., Int. Ed. Eng/.* **1992.** *32,* 1341. **(2)** Casey. C. P.; Widenhoefer. R. **A,:** Hayashi. R. K. *Inorg. Chim. Acta*

^{1993,} *212,* 81.

^{(3) (}a) Casey, C. P.: Widenhoefer. R. **A,:** Hallenbeck. **S.** L.; Gavney. J. **A,,** Jr. *J. Chem. Soc., Chem. Commun.* **1993,** 1692. (b) Casey. C. P.; Widenhoefer. R. **A.;** Hallenbeck. **S.** L.: Hayashi, R. K.: Gavney, J. **A.** *Orga~7ometallics* **1994,** *13,* 4720.

⁽⁴⁾ Casev. C. P.: Widenhoefer. R. **A,:** Hallenbeck. **S.** L. *Oreanometallics* **1993**, 12, 3788.
(5) (a) Eisenberg, R.; Hendriksen, D. E. Adv. Catal. **1979**, 28, 79. (b)

⁽⁵⁾ (a) Eisenberg, R.; Hendriksen, D. E. Adv. *Card* **1979.** *28,* 79. (bj Vlasenko, V-M.; Yuzefovich, *G.* E. *Russ. Chem. Rev. (Engl. Transl.)* **1969,38.** 728. (c) Sneedon, R. P. **A.** In *Comprehensive Organometallic Chernisrn,* Wilkinson, *G.,* Stone, F. *G.* **A,.** Abel. E. W.. Eds.: Pergamon: New York, 1982: Vol. 8, Chapter 50.

^{(6) (}a) Laine, R. M.: Wilson. R. B. *Aspects Homogeneous Catal.* **1984.** *5,* 217. (bj Ford. P. C. *Acc. Chern. Rev.* **1981.** *14.* 31.

^{(7) (}a) Jessop. P. G.; Ikariya, T.; Noyori. R. *Nature* **1994,** *368,* 231. (b) Grassner, F.: Leitner, W. *J. Chem.* Soc., *Chem. Commun.* **1993,** 1465. (c) Graf, E.; Leitner. W. *J. Chem. SOC., Chem. Commun.* **1992,** 623. (d) Burgemeister, T.; Kastner, F.; Leitner, W. Angew. Chem., Int. Ed. *Engl.* **1993,** *32,* 739. (e) Tsai, J.-C.; Nicholas, K. M. *J. Am. Chem. Soc.* **1992,** *114,* 5117. *(0* Inoue, Y.; Izumida, H.; Sasaki, Y.; Hashimoto. H. *Chem. Lett.* **1976,** 863. (9) Khan, M. M. T.; Halligudi, **S.** B.; Rao, N. N.; Shukla, **S.** *J. Mol. Caral.* **1989, 51,** 161. (h) Hashimoto. H.; Inoue. Y. Jpn. Pat. 76.138.614, 1976; *Chem. Absrr.* **1977.** *87.* 67853~. (i) Tijin Ltd. Jpn. Kokai Tokkyo Koho 81.166.146, 1981: *Chern. Abstr.* **1982,** *96,* 122211~. (j) Tijin Ltd. Jpn. Kokai Tokkyo Koho 81.140.948. 1981; *Chem. Abstr.* **1982,** *96,* 68352d.

^{(8) (}a) Pandey. K. K.: Garg, K. H.: Tiwari. **S.** K. *Polyhedron* **1992,** 11. 947. (b) Ito, T.; Matsubara, T. *J. Chem. Soc., Dalton Trans.* **1988,** 2241. (c) La Monica, G.: Angaroni, M. **A,;** Cariati, F.; Cenini, **S.** *lnorg. Chim. Acta* **1988,** *143.* 239. (d) Paonessa, R. **S.;** Trogler, W. C. *J. Am. Chem.* Soc. **1982,** *104.* 3529. (e) Lyons, D.: Wilkinson, *G.;* Thornton-Pett. M.; Hursthouse, M. B. *J. Chem. Soc., Dalton Trans.* **1984,** 695. *(0* Darensbourg, D. J.; Rokicki, **A.** *Organometallics* **1982,** *I.* 1685. (g) Darensbourg, D. J.; Fisher. M. B.; Schmidt, R. E. J.; Baldwin. B. J. *J. Am. Chem.* Soc. **1981,** *103.* 1297. (h) Darensbourg, D. J.: Rokicki. **A,:** Darensbourg, M. Y. *J. Am. Chem. Soc.* **1981,** *103.* 3223. (i) Smith, **S. A,:** Blake. D. M.: Kubota, M. *Inorg. Chem.* **1972.** */I,* 660. *Q)* Johnson. B. F. *G.;* Johnston, R. D.: Lewis, J.; Williams, I. G. *J. Chern.* Soc. *A* **1971,** 689. (k) Pu, L. **S.:** Yamamoto, **A,;** Ikeda, **S.** *J. Am. Chem.* Soc. **1968.** *90,* 3896. (1) Bradley, M. G.; Roberts, D. **A,;** Geoffroy, *G.* L. *J. Am. Chem.* Soc. **1981,** *103.* 379. (m) Roberts. D. **A.:** Geoffroy. *G.* L. *J. Organomet. Chern.* **1980.** *198.* C75. (n) Komiya. S.: Yamamoto, **A.** *Bull. Chem.* Soc. *Jpn.* **1976,** *49,* 784. *(0)* Kolomnikov, I. **S.:** Gusev. **A.** I.: Aleksandrov, G. G.; Lobeeva, T. **S.:** Struchkov. Y. T.: Vol'pin, M. E. *J. Organomet. Chem.* **1973,** *59,* 349. (pj Komiya. **S.:** Yamamoto. **A.** *J. Organomet. Chem.* **1972.** *46.* C58.

Scheme 2

Scheme 3

solution of the dicobalt dicarbonyl complex $[Cp*Co(\mu-CO)]_2$ **(2)** in 45% yield by NMR (Scheme 3). **2** was identified on the basis of its ¹H NMR spectrum (δ 1.41) and IR spectrum (hexane, 1758 cm^{-1}).⁹

The formation of 2 from 1 and $CO₂$ is of interest because the transformation involves the reduction of $CO₂$ by a metal cluster compound. However, the forcing conditions required for the transformation precluded the isolation of any tricobalt intermediates. We therefore studied the reaction of **1** with the more reactive $CO₂$ analogs $CS₂$ and phenyl isocyanate in an effort to isolate new tricobalt derivatives.'O

Reaction of 1 with CS₂. When a black benzene solution of **1** was stirred with excess CS_2 for 15 min at room temperature, the solution turned brown. 'H NMR analysis of the crude reaction mixture indicated a mixture of three products that

cо **1 2**

accounted for greater than 95% of the Cp* resonances. **A** Cp* resonance at δ 1.51 accounted for 15% of the total Cp* peaks and was shown to be the thiocarbonyl sulfide cluster $\overline{Cp^*}_{3}Co_{3}$ - $(\mu_3$ -CS $)(\mu_3$ -S $)$ (3) by spectroscopy and by X-ray crystallography (see below). A second Cp^* resonance at δ 1.55 accounted for 20% of the Cp* peaks. When solvent was evaporated and the crude reaction mixture heated in C_6D_6 for 15 min at 80 °C, the compound with the δ 1.55 resonance was converted to 3 $(\delta$ 1.51). We have not been able to obtain further structural information on the δ 1.55 intermediate. The third compound, **4,** had three resonances that always appeared in the same ratio; two Cp^{*} resonances at δ 1.73 and 1.72 in a 2:1 ratio accounted

^{(9) (}a) Bailey, W. I.; Collins, D. M.; Cotton, F. **A,;** Baldwin, **J.** C.; Kaska, W. C. *J. Organomer. Chem.* **1979,** *165, 373.* (b) Cirjak, L. M.; Ginsburg, **R.** E.; Dahl, L. F. *Inorg. Chem.* **1980,** *21,* **940.**

⁽IO) (a) Ibers, J. **A.** *Chem.* **SOC.** *Rev.* **1982,** *11,* **57.** (b) Wemer, H. *Coord. Chem. Rev.* **1982,** *43,* 165.

for 65% of the total Cp* resonances, and a two-proton resonance at δ 2.48 was observed. No metal hydride resonance was seen. The δ 2.48 resonance is at too low a frequency for a μ -CH₂ group but is consistent with a μ -thioformaldehyde ligand.¹¹ Cluster **4** was exceedingly soluble in hydrocarbon solvents and decomposed rapidly upon attempted low-temperature silica gel chromatography. **As** a result, **4** could be purified only by careful hexane extraction of a mixture of **3** and **4** to give **4** as an oily black solid which contained \sim 15% 3 by ¹H NMR analysis. The molecular formula of **4** could not be determined from the mass spectrum of a mixture of **4** and **3.** We suggest a partial structure for 4 consisting of a 46-electron $Cp*_{3}Co_{3}(\mu$ -CH₂S) unit; other unobserved ligands, possibly a μ -S or a μ -CS, might provide the additional two electrons needed for a coordinatively saturated 48-electron tricobalt cluster (Scheme 4).

Cluster **3** was obtained by heating the initial product mixture in benzene, which converted the δ 1.55 intermediate to 3. The residue was washed with pentane and crystallized from toluene to provide pure **3.** The IR spectrum of **3** displayed two bands at 1040 and 1021 cm⁻¹, similar to the spectrum of the C₅H₄Me analog Cp' ₃C₀₃ $(\mu_3$ -CS $)(\mu_3$ -S $)$, which displayed bands at 1069 and 1059 cm^{-1.12}

X-ray Crystallography of 3. The structure of **3** was determined by X-ray crystallography (Figure 1, Tables 1 and 2) and shown to consist of an equilateral triangle of cobalt atoms capped on one face by a μ_3 -sulfide ligand and on the opposite face by a μ_3 -thiocarbonyl ligand. Dahl has noted that in bicapped trimetallic clusters, the M-M distances lengthen upon substitution of bulky Cp* ligands for the less sterically demanding Cp ligand.¹³ In accord with this observation, the average Co-Co distance for **3** [2.495 Å] is \sim 0.05 Å longer than the Co-Co distances in the Cp analog $Cp_3Co_3(\mu_3$ -CS) (μ_3-S) [2.43-(1) and $2.44(1)$ Å for two independent molecules].¹⁴ In addition, the M-M distances in bicapped trimetal clusters typically

- (1 1) (a) Adams, R. D.; Golembeski, N. M.; Selegue, J. P. *J. Am. Chem. SOC.* **1981,** *10.3,* 546. (b) Adams, R. D.; Golembeski, N. M. *J. Am. Chem. SOC.* **1979,** *101,* 1306. (c) Adams, R. D.; Selegue, J. P. *J. Organomet. Chem.* **1980,** *195,* 223. (d) Adams, R. D.; Golembeski, N. M.; Selegue, J. P. *J. Am. Chem. SOC.* **1979,** *101,* 5862.
- (12) Fortune, J.; Manning, A. R. *Organometallics* **1983,** *2,* 1719.
- (13) Olson, W. L.; Dahl, L. **F.** *J. Am. Chem. SOC.* **1986,** *108,* 7657.
- (14) (a) Werner, H.; Leonhard, K. Angew. Chem., Int. Ed. Engl. 1979, 18, 627. (b) Werner, H.; Leonhard, K.; Kolb, 0.; Rottinger, E.; Vahrenkamp, H. *Chem. Ber.* **1980,** *113,* 1654.
- **(15)** hlliam, C. R.; Thoden, J. B.; Stacy, A. **M.;** Spencer, B.; Englert, **M.** H.; Dahl, L. F. *J. Am. Chem. SOC.* **1991,** *113,* 7398.

4, part structure? Cp'

Figure 1. X-ray crystal structure for $Cp*_{3}Co_{3}(\mu_{3}-CS)(\mu_{3}-S)$ (3). Thermal ellipsoids are shown at the 35% probability level.

Table 1. Crystal Structure Data for $Cp*_{3}Co_{3}(\mu_{3}-CS)(\mu_{3}-S)$ (3) and $\mathrm{Cp^*}_2\mathrm{Co}_2(\mu_2,\mu_2\text{-}n^2\text{-PhNCOMPh})$ (5)

	3	5
empirical formula	$C_{31}H_{45}S_{2}Co_{3}$	$C_{33}H_{40}N_2OCo_2$
color; habit	black block	black wedge
crystal size, mm	$0.5 \times 0.3 \times 0.3$	$0.5 \times 0.3 \times 0.2$
crystal system	monoclinic	monoclinic
space group	$P2_1/n$	$P2_1/c$
a, Ă	8.5651(5)	10.964(1)
b, Å	17.9536(15)	15.5496(6)
c, À	19.574(2)	18.112(2)
β , deg	91.368(6)	99.615(8)
V, \mathring{A}^3	3009.2(2)	3044, 6(4)
peaks to determine cell	41	40
2θ range of cell peaks, deg	$10.0 - 25.0$	$10.0 - 25.0$
Z	4	4
fw	658.6	598.5
density (calc), $g \text{ cm}^{-3}$	1.454	1.306
abs. coeff., mm ⁻¹	1.78	1.113
F(000)	1376	1256
$R(F)$, ^a %	3.79	6.12
$R_w(F),^b\%$	4.52	8.28

 ${}^{\circ}R(F) = |\Sigma||F_{o}| - |F_{c}||\Sigma|F_{o}| \times 100$. ${}^{\circ}R_{w}(F) = [\Sigma w||F_{o}| - |F_{c}||^{2}/$ $\sum w |F_0|^2$ ^{1/2} × 100 where $w = (\sigma^2(F) + 0.0006F^2)^{-1}$.

lengthen as the size of the capping atoms increases.¹⁵ As a result, the Co-Co distance in cluster **3,** which possesses a single apical sulfur atom, is somewhat longer than the $Co-Co$ distances observed for the 48-electron $(Cp*C₀)$ ₃ clusters $Cp *_{3}$ -

Table 2. Selected Bond Lengths **(A)** and Angles (deg) for $Cp*_{3}Co_{3}(\mu_{3}-CS)(\mu_{3}-S)$ (3)

Co(1) – Co(2)	2.491(1)	$Co(1)-Co(2)-Co(3)$	59.9(1)
Co(1) – Co(3)	2.492(1)	$Co(1)-Co(3)-Co(2)$	59.8(1)
Co(2) – Co(3)	2.503(1)	Co(2) – Co(1) – Co(3)	60.3(1)
$Co(1)-S(1)$	2.129(1)	$Co(1)-C(1)-S(2)$	131.8(3)
$Co(2)-S(1)$	2.128(1)	$Co(2)-C(1)-S(2)$	133.5(3)
$Co(3) - S(1)$	2.130(1)	$Co(3)-C(1)-S(2)$	131.6(3)
$Co(1)-C(1)$	1.958(5)	$C(1) - C0(1) - S(1)$	89.4(1)
$Co(2)-C(1)$	1.936(5)	$C(1) - C0(2) - S(1)$	90.0(1)
$Co(3)-C(1)$	1.949(5)	$C(1) - C0(3) - S(1)$	89.6(1)
$C(1)-S(2)$	1.634(5)	$Co(1)-C(1)-Co(2)$	79.6(2)
$Co(1)-Cp_{(cent)}$	1.723	$Co(1)-C(1)-Co(3)$	79.3(2)
$Co(2)-Cp_{(cent)}$	1.731	$Co(2)-C(1)-Co(3)$	80.2(2)
$Co(3)-Cp_{(cent)}$	1.732	$Co(1)-S(1)-Co(2)$	71.6(1)
		$Co(1)-S(1)-Co(3)$	71.6(1)
		$Co(2)-S(1)-Co(3)$	72.0(1)

 $Co₃(\mu_3-CCH₃)₂$ [2.437(1) Å],¹⁶ Cp^{*}₃Co₃(μ_3 -NO)₂ [2.423(2) Å],² and $Cp*_{3}Co_{3}(\mu_{3}-CO)(\mu_{3}-CCH_{3})(\mu_{2}-H)$ [2.425(1) Å],¹⁷ which possess only carbon or nitrogen atoms at the apical positions.

Reaction of 1 with Phenyl Isocyanate. Tetrahydride **1** reacted with a low concentration of phenyl isocyanate [0.3 MI at 55 °C in C_6D_6 to form a 65:28:7 ratio of the N,N'diphenylureylene dicobalt complex $Cp_{2}^{*2}Co_{2}(\mu_{2},\mu_{2}-\eta^{2}-PhNCON-$ Ph) (5), the known dicarbonyl tricobalt cluster $Cp*_{3}Co_{3}(\mu_{3}-CO)_{2}$ **(6),18** and the dicobalt dicarbonyl complex **2** (Scheme 5). The ratio of the carbonyl products **6:2** decreased at higher concentration of PhNCO. For example, when **1** and PhNCO [2.1 MI were heated at 55 °C in C_6D_6 for 20 min, a 65:4:31 ratio of **5:6:2** was obtained.

The known cluster **6** was characterized on the basis of its unusual paramagnetic chemical shift in the 'H NMR spectrum (δ 3.39 in C₆D₆) and from the IR spectrum (1681 cm⁻¹ in hexane).

In a preparative experiment, *5* was isolated in 13% yield from reaction of 1 and phenyl isocyanate [2.5 M] in benzene at 55 "C. Recrystallization from pentane gave *5* as green blocks which readily dissolved in benzene to form yellow-brown solutions. In the ¹H NMR spectrum, a singlet at δ 1.45 and aromatic resonances at δ 7.25-8.04 established the 1:1 ratio of Cp* ligands to phenyl groups. The IR spectrum displayed a strong carbonyl stretch at 1695 cm⁻¹; v_{CO} values for ureylene complexes range from 1608 to 1698 cm^{-1.19}

X-ray Crystallography of $\mathbb{C}p^*_{2}\mathbb{C}o_2(\mu_2,\mu_2-\eta^2-\mathbb{P}bN\mathbb{C}O\mathbb{C}Pb)$ **(5).** The structure of *5* was determined by X-ray crystallography and consists of a pair of cobalt atoms bonded to a $\mu_2,\mu_2-\eta^2$ -N,N'-diphenylureylene ligand (Figure 2, Tables 1 and 3). The $Cp*$ ligand bonded to $Co(1)$ was highly disordered and was therefore modeled as a rigid body with partial occupancy in two orientations; the major orientation (55%) is depicted in Figure 2. Each nitrogen atom of the N , N' -diphenylureylene ligand is bonded symmetrically to both cobalt atoms. The Co-Co distance of 2.456(1) \AA is consistent with a Co-Co single bond which is required for a closed-shell, 18-electron configuration at each metal. The centroids of the Cp* ligands lie in the $Co(1)-C(1)-Co(2)$ plane but are displaced \sim 25° from the Co-Co axis away from the N,N'-diphenylureylene ligand $[Co(1)$ - 155.3°]. The structure of the dicobalt core and bridging atoms of **5** closely resembles the core structures of the related dicobalt $Co(2)-Cp*_{[centroid]} = 153.3^{\circ}, Co(2)-Co(1)-Cp*_{[centroid]}$ =

Figure 2. X-ray crystal structure for $Cp *_{2}Co_{2}(\mu_{2}, \mu_{2} - \eta^{2} - P_{1}NCONPh)$ *(5).* Thermal ellipsoids are shown at the 35% probability level. The minor orientation of the disordered Cp* ligand has been removed for clarity.

di-tert-butylureylene complex $Cp_2Co_2(\mu_2,\mu_2-\eta^2-Me_3CNCONC Me₃$ ²⁰ and the diiron complexes Fe₂(CO)₆(μ ₂, μ ₂- η ²-RNCONR) $[R = Ph₁²¹ Me²²]$.

Discussion

The reaction of $CO₂$ with tetrahydride 1 reduces $CO₂$ and forms the dicobalt dicarbonyl complex $[Cp*Co(\mu-CO)]_2$ (2); the fate of the oxygen atom which is cleaved from $CO₂$ is not known. The deoxygenation of $CO₂$ by electron-rich mononuclear metal complexes employing a range of stoichiometric reducing agents has been previously demonstrated.^{5c,23}

In the reduction of CS_2 with tetrahydride 1, the sulfide thiocarbonyl cluster **3** serves as the sulfide acceptor. The reaction of tetrahydride 1 with CS_2 (25 °C, 15 min) is more facile than the reaction of 1 with CO_2 (120 °C, 44 h); this is consistent with both the higher reactivity of CS_2 relative to CO_2 and the often better ligating properties of the softer S atoms of CS_2 compared to the hard O atoms of CO_2 .¹⁰ The cleavage of a C=S bond of CS_2 either by a metal cluster or in the formation of a metal cluster has been previously observed. For example, the tricobalt thiocarbonyl sulfide cluster $Cp_3Co_3(\mu_3-CS)(\mu_3-S)$ is formed both in the thermolysis of the η^2 -CS₂ cobalt adduct $CpCo(PMe₃)(\eta^2$ -CS₂)¹⁴ and in the thermolysis of the dicarbonyl complex $CpCo(CO)_2$ in the presence of CS_2 .¹² Similarly, the thiocarbonyl cluster $Os₃(CO)₁₀(CS)(S)$ is formed in the reaction of the triosmium cluster $Os₃(CO)₁₂$ with $CS₂²⁴$. The reaction of CS_2 with the triosmium dihydride clusters $Os₃H₂(CO)₁₀$ and

- (22) Doedens, R. J. *Inorg. Chem.* **1968,** *7,* 2323.
- (23) (a) Kolomnikov, I. *S.;* Lysyak, T. V. *Russ. Chem. Rev. (Engl. Transl.)* **1990,** *59,* 589. (b) Behr, **A.** *Angew. Chem., Inr. Ed. Engl.* **1988,** *27,* 661.

⁽¹⁶⁾ Casey, C. P.; Widenhoefer, R. A,; Hallenbeck, S. L.; Hayashi, R. K.; Powell, D. **R.;** Smith, G. W. *Organometallics* **1994,** 13, 1521.

⁽¹⁷⁾ Casey, C. P.; Widenhoefer, R. A,; Hallenbeck, *S.* L.; Hayashi, R. K. *Inorg. Chem.* **1994,** *33,* 2639.

⁽¹⁸⁾ Olson, W. L.; Stacy, **A.** M.; Dahl, L. F. *J. Am. Chem. Soc.* **1986,** *108,* 7646.

⁽¹⁹⁾ Michelman, R. I.; Bergman, R. G.; Andersen, R. A. *organometallics* **1993,** 12, 2741.

^{(20) (}a) Otsuka, S.; Nakamura, A,; Yoshida, T. *Inorg. Chem.* **1968,** *7,* 261. (b) Otsuka, S.; Nakamura, A,; Yoshida, T. *Liebigs Ann. Chem.* **1968,** *719,* 54.

^{(21) (}a) Jarvis, **J.** A,; Job, B. E.; Kilboum, B. T.; Mais, R. H. B.; Owston, P. G.; Todd, P. F. *J. Chem. Soc., Chem. Commun.* **1967,** 1149. (b) Manuel, T. A. *Inorg. Chem.* **1964,** *3,* 1703. (c) Manuel, T. *Adv. Organomet. Chem.* **1965,** *3,* 233.

Scheme *6*

 $Os₃H₂(CO)₉(PMe₂Ph)$ produced a range of clusters including the μ -methanedithiolate cluster $[HOs₃(CO)₁₀]₂(\mu-S₂CH₂)$, the dithioformyl cluster $Os₃(\mu-S₂CH)(\mu-H)(CO)₉(PMe₂Ph)$, and the μ -sulfide μ -thioformaldehyde cluster Os₃(μ ₃- η ²-SCH₂)(μ ₃- $S(CO)₈(PMe₂Ph).¹¹$

The cleavage of a $C=X$ $[X = N, O, S]$ bond of isocyanates and isothiocyanates by metal clusters has also been observed. For example, the reaction of phenyl isocyanate with the triruthenium cluster $Ru_3(CO)_{12}$ formed the μ_3 -nitride cluster Ru_3 - $(CO)_{10}(\mu_3$ -NPh).²⁵ Reaction of the triosmium dihydride cluster $Os₃H₂(CO)₁₀$ with methyl or phenyl isocyanate gave the formamide clusters $\text{Os}_3(\text{CO})_{10}(\mu-\text{H})(\mu_2-\eta^2-\text{RNCHO})$ [R = CH₃²⁶ **(7),** p-toly12' 1. Thermolysis of **7** cleaved the C-N bond and

formed the μ_3 -nitride dihydride cluster Os₃(CO)₉(μ -H)₂(μ_3 -NCH3).26 Similarly, the reaction of the bis(phosphine)cobalt complex $CpCo(PPh₃)₂$ with isothiocyanates such as PhNCS formed the μ_3 -sulfide μ_3 -isocyanide cluster Cp₃Co₃(μ_3 -S)(μ_3 -CNPh).²⁸ The reaction of $Os₃H₂(CO)₁₀$ with aryl isothiocyanates such as PhNCS led initially to the formation of the μ_2 - η ¹thioformamide cluster $HOs₃(\mu_2-\eta^1-SC(H)=NPh)(CO)₁₀$, which was photolyzed to form the μ_3 - η^2 -thioformamide cluster HOs₃- $(\mu_3 - \eta^2 - SC(H) = NPh)(CO)_9$ **(8).** Thermolysis of **8** cleaved a $C-S$ bond to give the sulfide formimidoyl cluster $HOs₃(\mu_3-S)(\mu HC = NPh(CO)₉$.²⁹

Reductive disproportionation of phenyl isocyanate upon reaction with tetrahydride **1** formed the diphenylureylene complex *5* and the carbonyl compounds **2** and *6.* The **65:35** ratio of $5:(2 + 6)$ observed at both low and high isocyanate concentrations is consistent with the 2:1 ratio of $5:(2 + 6)$

^{(24) (}a) Broadhurst, P. V.; Johnson, B. F. *G.;* Lewis, J.; Raithby, P. R. *J. Organomet. Chem.* **1980,** *194,* C35. (b) Broadhurst, P. V.; Johnson, **B.** F. *G.;* Lewis. J.; Raithby, P. R. *J. Chem.* Soc., *Dalron. Trans.* **1982,** 1641.

⁽²⁵⁾ Sappa, E.; Milone, **A.** *J. Organomer. Chem.* **1973,** *61,* 383.

⁽²⁶⁾ Lin, **Y.** C.; Knobler, C. B.; Kaesz, H. D. *J. Am. Chem.* **SOC. 1981,** *103,* 1216.

^{(27) (}a) Adams, R. D.; Golembeski, N. M. *J. Organomet. Chem.* **1979,** *171,* C21. (b) Adams, R. D.; Golembeski. N. **M.;** Selegue, J. P. *Inorg. Chem.* **1981,** 20. 1242.

^{(28) (}a) Fortune, J.; Manning, A. R.; Stephens, F. *S. J. Chem.* Soc., *Chem. Commun.* **1983,** 1071. (b) Cullen, E. P.; Fortune, J.; Manning, **A.** R.; McArdle, P.; Cunningham, D.; Stephens, F. S. *Organometallics* **1990,** *9,* 1443.

⁽²⁹⁾ (a) Adams. R. D.; Dawoodi, Z. *J. Am. Chem.* **SOC. 1981,** *103,* 6510. (b) Adams, R. D.; Dawoodi, **Z.;** Foust, D. F.: Segmuller, B. E. *Organometallics* **1983, 2,** 315.

Table 4. Atomic Coordinates $(x 10⁴)$ and Equivalent Isotropic Displacement Coefficents $(\AA^2 \times 10^3)$ for Cp^{*}₃C₀₃(μ ₃-CS)(μ ₃-S) (3)

Table 5. Atomic Coordinates $(x 10⁴)$ and Equivalent Isotropic Displacement Coefficents $(\mathring{A}^2 \times 10^3)$ for $Cp_{2}^{*2}Co_{2}(\mu_{2},\mu_{2}-\eta^{2}-PhNCONPh)$ (5)

	x	y	z	U (eq)
Co(1)	1751(1)	8184(1)	3433(1)	33(1)
Co(2)	1684(1)	6800(1)	3514(1)	35(1)
Co(3)	2677(1)	7559(1)	4505(1)	34(1)
S(1)	344(2)	7552(1)	4102(1)	38(1)
C(1)	3453(5)	7469(3)	3580(2)	32(1)
S(2)	5226(2)	7438(1)	3292(1)	48(1)
C(2)	989(9)	8672(3)	2500(3)	57(2)
C(3)	140(7)	8968(3)	3055(3)	57(2)
C(4)	1230(8)	9308(3)	3507(3)	49(2)
C(5)	2726(7)	9228(3)	3236(3)	42(2)
C(6)	2576(8)	8839(3)	2608(3)	47(2)
C(7)	233(11)	8361(4)	1856(3)	124(4)
C(8)	$-1603(8)$	8975(5)	3109(5)	120(4)
C(9)	808(9)	9739(3)	4130(3)	93(3)
C(10)	4250(8)	9522(4)	3510(3)	83(3)
C(11)	3867(9)	8687(4)	2124(3)	97(3)
C(12)	1661(8)	5622(3)	3625(3)	53(2)
C(13)	177(8)	5874(3)	3441(3)	47(2)
C(14)	265(7)	6247(3)	2795(3)	43(2)
C(15)	1830(8)	6216(3)	2592(3)	48(2)
C(16)	2717(8)	5822(3)	3104(4)	59(3)
C(17)	2046(9)	5118(3)	4220(3)	90(3)
C(18)	$-1325(8)$	5754(4)	3820(3)	75(3)
C(19)	$-1140(7)$	6544(4)	2401(3)	69(3)
C(20)	2499(8)	6501(4)	1932(3)	77(3)
C(21)	4404(8)	5610(4)	3061(4)	90(3)
C(22)	3474(8)	8239(3)	5337(3)	51(2)
C(23)	2303(7)	7752(3)	5550(3)	47(2)
C(24)	2834(8)	7004(3)	5441(3)	47(2)
C(25)	4333(8)	7047(3)	5155(3)	50(2)
C(26)	4718(8)	7808(4)	5094(3)	54(2)
C(27)	3474(9)	9072(3)	5445(3)	86(3)
C(28)	794(7)	7964(4)	5887(3)	75(3)
C(29)	1942(9)	6321(3)	5649(3)	79(3)
C(30)	5375(8)	6411(4)	4975(3)	90(3)
C(31)	6284(7)	8113(5)	4872(3)	92(3)

predicted by the stoichiometry of the conversion, 2PhNCO \rightarrow $PhNC(O)NPh + CO$. The reductive disproportionation of an isocyanate to a ureylene ligand has been observed in a number of mononuclear compounds 30 and in several polynuclear complexes. For example, the reaction of triiron decacarbonyl $[Fe₃(CO)₁₀]$ with phenyl isocyanate formed a dinuclear species which was initially formulated as the bis(isocyanate) hexacarbonyl complex $Fe₂(CO)₆(PhNCO)₂$ ^{21b,c} However a subsequent X-ray crystallographic study revealed the complex was actually the diphenylureylene compound $Fe₂(CO)₆(\mu₂- η ²-PhNC(O)-$ NPh).^{21a} Likewise, reaction of the highly reduced titanium carbonyl complex $Cp_2Ti(CO)_2$ with PhNCO initially formed the trinuclear complex $(Cp_2Ti)_3(PhNC(O)NPh)_2$ which fragmented upon thermolysis to form the dinuclear ureylene complex $(Cp₂ Ti)_2$ (PhNC(O)NPh) and the mononuclear ureylene complex Cp₂- $Ti(PhNC(O)NPh).³¹$ Reaction of PhNCO with the cobalt salen complex [Co(salen)Na(THF)] gave the dicobalt ureylene complex $[Co(salen)Na]_2(PhNC(O)NPh)$ along with $[Co(CO)_4]^-$, formed from the reaction of CO with the starting complex.³²

Formation of the diphenylureylene ligand of *5* from the reaction of **1** and phenyl isocyanate presumably requires the cleavage of an isocyanate $C=N$ bond and insertion of a coordinated isocyanate into a Co-N bond. **A** plausible mechanism which incorporates these transformations is depicted in Scheme **6.** Although Scheme **6** employs tricobalt intermediates, the formation of **5** from **1** and PhNCO could be equally

well explained using mono- or dinuclear intermediates. Coordination of phenyl isocyanate to **1** followed by cleavage of the C=N bond and loss of H₂ would give the μ_3 -nitride μ_3 -carbonyl intermediate $Cp*_{3}Co_{3}(\mu_{3}-NPh)(\mu_{3}-CO)$, **I**. Formation of intermediate **I** is supported by analogy to formation of **3** from **1** and $CS₂$. Coordination of a second isocyanate would give the μ_2 -nitride isocyanate intermediate II. Insertion of the isocyanate $C=N$ bond into a $Co-N$ bond would form the diphenylureylene carbonyl intermediate **III;** the insertion of a coordinated isocyanate into a $M-N$ bond has been previously observed.^{19,30} Intermediate **I11** could then undergo fragmentation to give **5** directly and a [Cp*Co(CO)] fragment which could eventually form compounds **2** and **6.**

Experimental Section

General Methods. All manipulations were performed under a nitrogen atmosphere in an inert-atmosphere glovebox or by standard high-vacuum techniques. **'H** NMR spectra were obtained on a Bruker WP200 or AM300 spectrometer, and ¹³C NMR spectra were obtained on a Bruker AM500 (126 MHz) spectrometer. Infrared spectra were

⁽³⁰⁾ Braunstein, P.; Nobel, D. *Chem.* Rev. **1989,** 89, 1927.

⁽³¹⁾ Fachinetti, G.; Biran, C.; Floriani, C.; Chiesi-Villa, **A,;** Guastini, C. *J. Chem.* Soc., *Dalton Trans.* **1979,** 792.

⁽³²⁾ Arena, F.; Floriani, C.; Chiesi-Villa, **A,;** Guastini, C. *Inorg. Chem.* **1986,** *25,* 4589.

recorded on a Mattson Genesis FT-IR spectrometer. Mass spectra were determined on a Kratos MS-80 spectrometer. Elemental analyses were performed by Desert Analytics (Tucson, AZ). Diethyl ether, hexane, pentane, and benzene were distilled from sodium and benzophenone; toluene was distilled from sodium. Benzene- d_6 was distilled from sodium and benzophenone or from sodium-potassium alloy. $CO₂$ (Matheson), CS_2 (Aldrich), and PhNCO (Aldrich) were used as received.

Reaction of 1 **with COz.** A 1.9 mL thick-walled resealable NMR tube containing 1 (4 mg, 0.007 mmol) and CO_2 (0.34 mmol) in C_6D_6 was heated at 120 °C, and the reaction was monitored periodically by 'H NMR spectroscopy. Concentrations were determined by integrating the Cp^{*} resonances for 1 (δ 62) and 2 (δ 1.41) relative to the residual proton signal of C_6D_6 (δ 7.15). After 44 h, the Cp* resonance for 1 could no longer be detected and the Cp* resonance for *2* accounted for 45% of the Cp* resonances in solution. Other unidentified Cp* resonances were observed at δ 47.9 (19%) and 1.70 (17%). A linear plot of In[l] versus time gave a first-order rate constant for the disappearance of 1 of $k_{obs} = 3.1 \times 10^{-5}$ s⁻¹.

 $Cp*_{3}Co_{3}(\mu_{3}-CS)(\mu_{3}-S)$ (3). Carbon disulfide (1.3 g, 17 mmol, 0.8) M) was added to a solution of 1 (250 mg, 0.43 mmol) in benzene (20 mL) and was stirred for 20 min. After benzene and unreacted CS_2 were evaporated under vacuum, the residue was redissolved in benzene and the solution was heated at 80 $^{\circ}$ C for 15 min. Evaporation of benzene gave a black residue consisting of a 2: 1 mixture of **4** and **3** by ¹H NMR analysis. The residue was washed with hexane until the filtrate changed color from black to brown. The precipitate was collected and dried to give $Cp*_{3}Co_{3}(\mu_{3}-CS)(\mu_{3}-S)$ (3) (54 mg, 19%) as a black powder which contained \sim 5% 4 by ¹H NMR analysis. **3** was further purified by crystallization from toluene at -20 °C: ¹H NMR (C₆D₆, 200 MHz) (C_5Me_5) , 10.2 (C_5Me_5) , μ_3 -CS carbon not observed; IR (CS_2) 1040, 1021 cm⁻¹; HRMS (EI) calcd (found) for $C_{31}H_{45}CoS_2$, 658.0956 (658.0988). Although samples of **3** were homogeneous and *'95%* pure by ¹H NMR analysis, elemental analyses for C were consistently low. δ 1.51; ¹³C{¹H} NMR [C₆D₆, 126 MHz, 0.007 M Cr(acac)₃] δ 93.05

 $Cp^*{}_2Co_2(\mu_{2},\mu_{2}.\eta^2-PhNCONPh)$ (5). A solution of 1 (250 mg, 0.43) mmol) and phenyl isocyanate (3 g, 34 mmol, *2.5* M) in benzene (10 mL) was stirred at **55** "C for 50 min. Benzene and unreacted PhNCO were evaporated under vacuum, and the residue was extracted with hexane. Evaporation of hexane under vacuum and crystallization from pentane at -20 °C gave 5 as green crystals (33 mg, 13%): ¹H NMR meta-H), 7.06 (t, $J = 7$ Hz, para-H), 1.45 (Cp*); ¹³C {¹H} NMR (126 (C_5Me_5) , NCON carbon not observed; IR (hexane) 1695 cm⁻¹; HRMS (EI) calcd (found) for $C_{33}H_{40}N_2OCo_2$, 598.1805 (598.1796). Anal. Calcd (found) for $C_{33}H_{40}N_2OCo_2$: C, 66.22 (65.56); H, 6.74 (6.60); N, 4.70 (4.63). (300 MHz, C_6D_6) δ 8.25 (d, $J = 7$ Hz, *ortho-H*), 7.26 (t, $J = 7$ Hz, MHz, C_6D_6) δ 147.6, 125.4, 123.8, 120.1 (NC₆H₅), 83.4 (C₅Me₅), 10.0

X-ray Crystallographic Determinations and Refinements. Each crystal was coated with epoxy and mounted on the tip of a thin glass fiber. Diffraction data were obtained with graphite-monochromated Mo Ka radiation on a Siemens P4RA diffractometer at 295 K. Automatic indexing of 40 well-centered reflections determined the unit cell: precise unit cell dimensions were determined by least-squares refinement of 25 well-centered, high-angle reflections (25° < 2 θ < 30"). Empirical absorption corrections were applied to each data set. Initial positions for Co atoms were found by direct methods, and all non-hydrogen atoms were located from successive difference Fourier maps. All non-hydrogen atoms were refined anisotropically; hydrogen atoms were fixed at idealized positions with isotropic thermal parameters of $U = 0.08$ Å². Crystallographic computations were performed employing SHELXTL-PLUS³³ software on VAX computers.

X-ray Crystallography of $Cp*_{3}Co_{3}(\mu_{3}-CS)(\mu_{3}-S)$ **(3).** Slow cooling of a saturated toluene solution to -20 °C gave black crystals of 3 suitable for X-ray analysis. The 6893 reflections collected produced 2937 independent, observed reflections $(|F| > 4.0\sigma(F))$. The largest residual on the final difference map was 0.45 e \AA^{-3} . Crystallographic data (Table l), selected bond lengths and bond angles (Table 2), and atomic coordinates (Table 4) are presented.

X-ray Crystallography of $Cp_{2}C0_{2}(\mu_{2},\mu_{2}-\eta^{2}-PhNCONPh)$ **(5).** Slow evaporation of a toluene solution gave black crystals of **5** suitable for X-ray analysis. The Cp^* ligand bonded to $Co(1)$ was disordered; the best fit of the data was obtained with a model which assigned the Cp* ligand partial occupancy over two independent orientations. In the major orientation (55%) , the Co(1) Cp^{*} ligand was eclipsed relative to the Co(2) Cp^* ligand, and in the minor orientation (45%), the Co(1) $Cp*$ ligand was staggered relative to the $Co(2)$ $Cp*$ ligand. Standard reflections showed no significant variations throughout data acquisition. The 6705 reflections collected produced 3828 independent, observed reflections ($|F| > 4.0\sigma(F)$). The largest residual on the final difference map was 0.64 e Å⁻³. Crystallographic data (Table 1), selected bond lengths and bond angles (Table 3), and atomic coordinates (Table *5)* are presented.

Acknowledgment. Financial support from the Department of Energy, Office of Basic Energy Sciences, is gratefully acknowledged. Grants from the NSF (CHE-9105497) and from the University of Wisconsin for the purchase of the X-ray instruments and computers are acknowledged. R.A.W. thanks the Department of Education for a fellowship.

Supplementary Material Available: ORTEP diagrams and tables of structure determination data, anisotropic thermal parameters for nonhydrogen atoms, selected interatomic distances and angles, and idealized atomic parameters for hydrogen atoms for compounds **3** and **5** (27 pages). Ordering information is given on any current masthead page.

IC9410147

⁽³³⁾ SHELXTL-PLUS, Siemens Analytical X-Ray Instruments, Inc